Research in the Peterson lab uses an interdisciplinary approach to understand important biological processes by utilizing tools from synthetic organic chemistry, chemical biology, biochemistry and molecular biology. We currently have two main projects ongoing in our lab: 1) synthesis of dopaminergic compounds and related catecholic to investigate the mechanism of various enzymes, including L-DOPA dioxygenase (collaboration with Prof. Keri Colabroy at Muhlenberg) and SULT1A3, or inhibit enzymes involved in the metabolism of dopamine, and 2) synthesis of small molecule inhibitors to probe the active site requirements of LpxC, an enzyme involved in the biosynthesis of Lipid A, an integral component of Gram-negative bacteria cell walls.
SELECTED PUBLICATIONS
- S.N. Malkowski, C.F. Dishuck, G.G. Lamanilao, C.P. Embry, C.S. Grubb, M. Cafiero, L.W. Peterson. Design, modeling and synthesis of 1,2,3-triazole-linked nucleoside-amino acid conjugates as potential antibacterial agents, Molecules, 2017, 22(10), 1682. DOI: 10.3390/molecules22101682
- J.C. Rote, S.N. Malkowski, C. S. Cochrane, G.E. Bailey, N.S. Brown, M. Cafiero, L.W. Peterson. Catechol reactivity: Synthesis of a series of 6-substituted dopamine derivatives, Synthetic Communications, 2017, 47(5), 435-441. DOI: 10.1080/00397911.2016.1269350
- A.K. Hatstat, M. Morris, L.W. Peterson, M. Cafiero. Ab initio study of electronic interaction energies and desolvation energies for dopaminergic ligands in the catechol-O-methyltransferase enzyme active site, Computational and Theoretical Chemistry, 2016, 1078, 146-162. DOI: 10.1016/j.comptc.2016.01.003
- D.J. Bigler, L.W. Peterson, M. Cafiero. Effects of implicit solvent and relaxed amino acid side chains on the MP2 and DFT calculations of ligand-protein structure and electronic interaction energies of dopaminergic ligands in the SULT1A3 enzyme active site, Computational and Theoretical Chemistry, 2015, 1051, 79-92. DOI: 10.1016/j.comptc.2014.10.031
- C. Bouillon, D. Paolantoni, J.C. Rote, Y. Bessin, L.W. Peterson, P. Dumy, S. Ulrich. Degradable hybrid materials based on cationic acylhydrazone dynamic covalent polymers promote DNA complexation through multivalent interactions, Chemistry – A European Journal, 2014, 20(45), 14705-14714. DOI: 10.1002/chem.201403695
- A.R. Hernandez, L.W. Peterson, E.T. Kool. Steric restrictions of RISC in RNA interference identified with size-expanded RNA nucleobases, ACS Chemical Biology, 2012, 7(8), 1454-1461. DOI: 10.1021/cb300174c
- A.T. Krueger*, L.W. Peterson*, J. Chelliserry, D.J. Kleinbaum, E.T. Kool. Encoding phenotype in bacteria with an alternative genetic set, Journal of the American Chemical Society 2011, 133(45), 18447-18451. DOI: 10.1021/ja208025e
Highlighted in Nature Chemical Biology 2012, 8(21). DOI: 10.1038/nchembio.755 - L.W. Peterson, J.-S. Kim, S. Mitchell, P. Kijek, J.M. Breitenbach, K.Z. Borysko, J.C. Drach, J.M. Hilfinger, B.A. Kashemirov, C.E. McKenna. Synthesis, transport and antiviral activity of Ala-Ser and Val-Ser prodrugs of cidofovir. Bioorganic & Medicinal Chemistry Letters 2011, 21(13), 4045-4049. DOI: 10.1016/j.bmcl.2011.04126
- L.W. Peterson*, M. Sala-Rabanal*, I.S. Krylov, M. Serpi, B.A. Kashemirov, C.E. McKenna. Serine side chain-linked peptidomimetic prodrugs of cyclic cidofovir: Synthesis and interaction with hPEPT1. Molecular Pharmaceutics 2010, 7(6), 2349-2361. DOI: 10.1021/mp100186b
- L.W. Peterson and C.E. McKenna. Prodrug approaches to improving the oral absorption of antiviral nucleotide analogues. Expert Opinion on Drug Delivery 2009, 6(3), 405-420. DOI: 10.1517/17425240902824808
Education
Post-Doctoral Researcher, Stanford University
Ph.D. University of Southern California (Bioorganic Chemistry)
B.A. Carroll College (Chemistry)
Ph.D. University of Southern California (Bioorganic Chemistry)
B.A. Carroll College (Chemistry)

James H. Daughdrill Professor in the Natural Sciences, Associate Professor of Chemistry, Chair of Biochemistry and Molecular Biology