The Checkered History of Checkerboard Distributions: Reply

EDWARD F. CONNOR,1,4 MICHAEL D. COLLINS,2 AND DANIEL SIMBERLOFF3

Diamond et al. (2015) raise three criticisms of Connor et al. (2013). The first is that by analyzing each archipelago separately rather than analyzing species pairs using their entire or global geographic ranges, Connor et al. (2013) have misinterpreted the factors that affect the geographic ranges of congeneric species pairs. The second is that Connor et al. (2013) did not plot the geographic ranges of species pairs. Finally, Connor et al. (2013) did not include information on vagrancy.

The checkered history of checkerboard distributions is characterized by its pioneer (Diamond 1975) and subsequent followers (Diamond and Gilpin 1982, Gilpin and Diamond 1982, 1984, Sanderson et al. 2009) examining the pairwise geographical distributions of species pairs within archipelagos. Connor et al. (2013), as in previous work (Connor and Simberloff 1979, 1983, 1984, Simberloff and Collins 2010, Collins et al. 2011), followed this convention since it appeared to be part of the definition of and the tradition for inferring competitively determined checkerboard distributions. It is conceivable that one could attempt to analyze rigorously the global pairwise distributions of species, but Diamond et al. (2015) have not done so. Furthermore, such an analysis would raise new issues. For example, how should patchy distributions within larger islands like New Guinea be treated when one scores checkerboard distributions? How should the barriers to dispersal among island groups within archipelagos, as proposed by Mayr and Diamond (2001), inform the analysis?

Diamond et al. (2015) marshal only a single example to support their contention that, by analyzing the entire or global distributions of species, one would detect many pairs of species that display checkerboard distributions because of competition. Furthermore, their critique is based on the simple inspection of a map, which is tantamount to Diamond’s (1975) original basis for inferring that competition had affected the geographical distribution of species: that a checkerboard distribution is prima facie evidence for competitive interactions shaping geographical distributions; in essence, checkerboards arise only because of competition. They claim that merely by visually examining the ranges of Macropygia mackinlayi and M. nigroirostris they can tell that the distribution of these two species requires an explanation involving interspecific competition—a clear case of déjà vu all over again. However, Mayr and Diamond (2001) provided compelling evidence for the existence of barriers to dispersal within archipelagoes, and barriers likely exist between archipelagoes as well. Any analysis would need to account for potential dispersal limitation both within and between archipelagoes.

Connor et al. (2013) motivated the three attributes that they claim define a “true checkerboard,” a species pair that would have geographical distributions consistent with competitive interactions: (1) the pair would have exclusive island-by-island distributions, (2) their geographic ranges would overlap more than expected were they independently determined, and (3) the pair would share one or more of the island groups defined by Mayr and Diamond (2001) and mapped by Simberloff and Collins (2010) and Collins et al. (2011) for the Solomon Islands and the Bismarck Archipelago, respectively. These three criteria were intended to provide an operational definition of a “checkerboard” distribution sensu Diamond (1975) and Mayr and Diamond (2001). Diamond et al. (2015) do not object to this definition, yet as mentioned above they feel confident that their visual inspection of the ranges satisfies the second criterion. In the analysis conducted by Connor et al. (2013), the pair of Cuckoo Doves in question met...
criteria 1 and 3, but the statistical analysis showed that
the overlap of the geographic hulls of these two species
was in fact not statistically significantly greater than
expected were the distributions determined independent-
ly. If Connor et al.’s (2013) analysis were repeated using
the convex hulls for the global geographical distribution
of each species, Diamond et al. (2015) would have us
believe that the results would be different. While this is
certainly a possibility, without actually doing the hard
work of performing an analysis as did Connor et al.
(2013), it remains an unsubstantiated claim. Comparing
the global distributions of species pairs would not
change how species pairs are scored on either criterion
1 or 3 of Connor et al. (2013). It would alter the
observed scaled overlap between their convex hulls, and,
commensurately, the expected overlap and its standard
error. However, we doubt that an analysis based on
global geographical distributions would shift the null
statistical distribution of scaled overlap to such an
extent that the observed overlap between M. mackinlayi
and M. nigrirostris, or any other pair for that matter,
would then become statistically significantly more than
expected under the hypothesis that species ranges are
independent (criterion 2).

Connor et al. (2013) did not include a lengthy
Appendix with all the convex hulls of all pairs of species
or even just the congener and guild members, since
these pictures by themselves cannot decide the issue at
hand. Without the statistical analysis it is impossible to
tell if any pairs of species meet the three criteria they
propose to define a “true checkerboard.” In particular, it
is not clear from the maps shown or referenced by
Diamond et al. (2015) that the geographical distribu-
tions of these species, as represented by their convex
hulls, overlap more than expected were the species
distributions determined independently. Connor et al.
(2013) did provide the observed, expected and the
standard deviation of the expected values of overlap
for each pair of congeneric species and guild members
in their Appendix C.

Finally, Diamond et al. (2015) are correct; Connor et
al. (2013) did not include information on vagrancy. But
vagrancy is not evidence of competitive exclusion.
Vagrants merely indicate that individuals of a species
occasionally arrive at a location but have not established
a resident population that breeds and recruits. Lack of

Literature Cited

matrices and checkerboard distributions of birds in the
Bismarck Archipelago. Journal of Biogeography 38:2373–
2383.

Connor, E. F., M. D. Collins, and D. Simberloff. 2013. The
checkerboard history of checkerboard distributions. Ecology
94:2403–2414.

Connor, E. F., and D. Simberloff. 1979. The assembly of
species communities: chance or competition? Ecology
60:1132–1140.

Connor, E. F., and D. Simberloff. 1983. Interspecific com-
petition and species co-occurrence patterns on islands: null

Connor, E. F., and D. Simberloff. 1984. Neutral models of
species co-occurrence patterns. Pages 316–331 in D. R.
Strong, D. Simberloff, L. G. Abele, and A. Thistle, editors.
Ecological communities: conceptual issues and the evidence.
Princeton University Press, Princeton, New Jersey, USA.

and evolution of communities. Belknap Press, Cambridge,
Massachusetts, USA.

Diamond, J. M., and M. E. Gilpin. 1982. Examination of the
“null” model of Connor and Simberloff for species co-

checkered history of checkerboard distributions. Comment.

to non-randomness in species co-occurrences on islands.
Oecologia 52:75–84.

Gilpin, M. E., and J. M. Diamond. 1984. Are species co-
occurrents on islands non-random, and are null hypotheses
useful in community ecology? Pages 297–315 in D. R. Strong,
Jr., D. Simberloff, L. G. Abele, and A. B. Thistle, editors.
Ecological communities: conceptual issues and the evidence.
Princeton University Press, Princeton, New Jersey, USA.

Mayr, E., and J. Diamond. 2001. The birds of Northern
Melanesia: speciation, ecology, and biogeography. Oxford
University Press, Oxford, UK.

Pairwise co-occurrence of Bismarck and Solomon landbird

Islands: the domain of the dynamic equilibrium theory and
assembly rules, with comments on the taxon cycle. Pages
237–263 in J. B. Losos and R. E. Ricklefs, editors. The theory
of island biogeography revisited. Princeton University Press,
Princeton, New Jersey, USA.
Queries for ecol-96-12-18_19

This manuscript/text has been typeset from the submitted material. Please check this proof carefully to make sure there have been no font conversion errors or inadvertent formatting errors. Allen Press.