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Refining the Inferential Model of
Scientific Understanding
Mark Newman

In this article, I use a mental models computational account of representation to illustrate

some details of my previously presented inferential model of scientific understanding. The

hope is to shed some light on possible mechanisms behind the notion of scientific under-

standing. I argue that if mental models are a plausible approach to modelling cognition,

then understanding can best be seen as the coupling of specific rules. I present our beliefs as

‘ordinary’ conditional rules, and the coupling process as one where the consequent of one

ordinary rule (OR) matches and activates the antecedent of the rule to which it is coupled

in virtue of the activation of an intermediate ‘inference’ rule. I argue that on this approach

knowledge of an explanation is the activation of ORs in a cognitive hierarchy, while

understanding is achieved when those activated ORs are also coupled via correct inference

rules. I do not directly address issues regarding the plausibility of mental models them-

selves. This article should therefore be seen as an exercise in refining the inferential

model within an already presupposed computational setting, not one of arguing for the

psychological adequacy of computational approaches.

1. Introduction

What does it mean to understand a scientific explanation, rather than merely know it?

This is a question currently receiving a good deal of attention from epistemologists

and philosophers of science (de Regt, Leonelli, and Eigner 2009; de Regt 2013).

There does seem to be a difference: for instance, Cushing (1991) argues that although

one can derive Kepler’s first law
1

from Newton’s laws of motion, one really cannot

understand why a planet takes a plane curve orbit unless one appeals to the causal

explanation provided by Einstein’s general theory of relativity. Cushing thinks

causal explanations are required for understanding. For other authors, the key to

understanding lies in a different property, such as the ability to manipulate variables
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in an explanation (Grimm 2006, 2010), or to build models based on explanatory

knowledge (de Regt 2009). Although their accounts are helpful, none of these

authors has provided a theory that clearly reveals the underlying psychological

reasons we see a difference between explanations which provide understanding and

those where we merely come to know that something is the case without understand-

ing it.

In a previous article (Newman 2012), I tried to explain this psychological difference

between knowing an explanation and understanding it with my inferential model of

scientific understanding. The focus of attention was on understanding the explanation

of a phenomenon, rather than understanding a model, theory, or some other object. I

argued that if we take seriously the work done by cognitive psychologists it becomes

apparent that understanding a scientific explanation is more akin to comprehending

a story than either coming to know some sequence of facts or being able to solve pro-

blems using a theory. My goal in this article is to investigate a possible way in which

one might model the cognitive processes involved in scientific comprehension, and

draw some conclusions based on that investigation. Still focusing only on the expla-

nation of some phenomenon, I propose a cognitive rule-based model, which, in con-

trast to current accounts of understanding, if correct, would be able to distinguish the

specific cognitive mechanisms involved in the process of coming to understand some-

thing. I do not argue that a computational approach in general is the correct way to

model cognition, but that if it turns out to be close, then understanding is a cognitive

state that can best be understood as the coupling of specific kinds of rules. Hence, I

instrumentally present our beliefs as conditional rules, and the coupling process as

one where the consequent of one rule matches and activates the antecedent of the

rule to which it is coupled. The activation of each rule requires the system break a ‘cog-

nitive threshold’ set for that rule. The matter of how a threshold is established is mys-

terious, and I make some suggestions on how we might better understand this

important computational mechanism. The important point is that on this compu-

tational approach, scientific understanding can be represented as the coupling of

rules that represent our beliefs. That itself is enlightening. Empirical studies may

help reveal whether the model is sustainable.

Before we get started, a word is in order about the overarching motivation for a rule-

based mental model approach to representing the mind. One benefit of a rule-based

account is that it maintains a commitment to representing the mind’s functions in

propositional terms, and hence accords nicely with our standard philosophical frame-

works for describing knowledge states. This is not to say that our representations have

to be given in sentential form, but by using a rule-based approach we are able to delib-

erate intelligibly about theories of knowledge and the nature of understanding. This

may include, for example, considering whether our accounts of knowledge and under-

standing ought to be internalist or externalist. Alternative accounts that appeal to

lower level mechanisms, such as Churchland’s (1989) prototype activation model,

cannot achieve this because they work in a domain below that where concepts like jus-

tification, belief, and truth can be clearly delineated.
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A second reason for adopting mental models is the empirical inadequacies of neural

network approaches. Most important (and this is reflected in Churchland’s approach),

neural networks have successfully been used to model low-level psychological pro-

cesses like perception, memory, and categorization, but they leave entirely untouched

important phenomena such as inference-making, and problem solving.
2

It seems

intuitive that understanding is, if not constituted by then at least intimately connected

to, these latter two processes.

A third reason supporting my selection of mental models is that even if neural

network accounts come to provide a preferable overarching framework for representing

mind, it seems increasingly likely the two approaches can be synthesized with theoreti-

cal neuroscience approaches. Such a synthesis is controversial but recent work indicates

this may be possible. Scientists like Chris Eliasmith, Randy O’Reilly, and Terry

Sejnowski certainly seem to be headed in this unifying direction (Thagard 2010).

Given these reasons, I think it perfectly legitimate to follow the rule-based mental

models approach I adopt in this article. In section 2, I use an example from kinetic

theory to illustrate precisely how the inferential model of scientific understanding

works. In section 3, I explain the rule-based account of mental models. In section 4,

the rule-based account is then used to illustrate how a cognitive system builds a situ-

ation model. In sections 5 and 6, I use that implementation to precisely tease apart our

notions of knowledge and understanding. Potential objections are considered in

section 7.

2. Scientific Knowledge and Understanding

Here I want to reiterate briefly an argument I have made elsewhere for thinking that

scientific knowledge is different from scientific understanding.
3

To do this I will use a

familiar example of a scientific explanation: the kinetic theory’s explanation of the

temperature of an ideal gas.
4

(1) We assume a gas is made up of tiny, spherical, rapidly moving, perfectly elastic,

molecules that have no extension and do not collide with one another.

(2) In a closed square container of length L and cross-sectional area A the pressure

exerted on one surface S is due to the impacts of the gas molecules.

(3) The motion of any given molecule has x, y, and z components, but we assume

the y and z components remain unaltered, whereas upon impact the x com-

ponent reverses from +vx to –vx.

(4) Each impact therefore produces a change of momentum Dpx ¼ 2mvx.

(5) Each molecule traverses the distance from one side of the container and back

again in a time Dt ¼ 2L/vx. This is the time between its collisions on the

surface S.

(6) The reciprocal of this is the number of collisions per second: 1/Dt ¼ vx/2L.

(7) So the rate of change of momentum is Dpx/Dt = 2mvx/2L/vx = mv2
x/L.

(8) From Newton’s second law this is the average force exerted by a molecule on

surface S.
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(9) Assuming all N number of molecules in the container behave the same way, the

total average force on S is Fav ¼ Nmv2/L.

(10) Pressure is force per unit area.

(11) Thus, P ¼ Nmv2/LA.

(12) The total speed squared of a molecule equals the sum of the squares of its com-

ponents v2 = v2
x + v2

y + v2
z .

(13) Assume all molecules move in all directions with equal likelihood v2
x = v2

y = v2
z .

(14) Thus v2
x = 1

3v2.

(15) Assuming that we can use v2
av as the average velocity of any molecule, this entails

P = Nmv2
av/3LA.

(16) Volume is V ¼ LA.

(17) Thus we get P = Nmv2
av/3 V .

(18) Since Nm is total mass of the gas, the density r ¼ Nm/V and P = 1
3rv2

av.

(19) This entails PV = 1
3Nmv2

av.

(20) The translational kinetic energy (KE) of an object is 1
2mv2.

(21) Thus we get PV = 2
3NKEav so pressure depends on the number of molecules per

unit volume as well as their average translational KE.

(22) Importantly the ideal gas law tells us that PV ¼ NRT, where R is a constant of

proportionality and T is temperature.

(23) Thus, 2
3NKEav = NRT.

(24) This means temperature of an ideal gas is proportional to the average transla-

tional energy of its molecules.

(25) So, kinetic theory’s explanation of the macroscopic property of temperature of a

gas is explained in terms of the motion of its micro-constituents.

According to cognitive psychologists
5

when we are given an explanation like this we

build a ‘mental model’. For this example we actually build something more specific: a

situation model—a representation of the situation described in the explanation. The

process of encoding this information into a representation (the model) requires sig-

nificant cognitive resources. For example, when we encode that molecules bounce

around in a container, or that their impacts on a surface generates pressure, it requires

we draw on and use a substantial amount of background information. For example, we

need to draw on the meaning of terms like ‘molecule’, ‘bounce’, ‘impact’, ‘surface’, etc.

These are difficult referential inferences regarding the meaning of terms in the expla-

nation—we interpret the meaning of each statement stepwise in building our

model. As we go through this process of selecting appropriate concepts to insert

into the model, we also sequence them in a chain that mimics the explanation

given. This process involves further, similar mechanisms that aid in building the

model. Once we have a fairly detailed account that reflects the explanation we can

be said to know the explanation.

However, it seems obvious that to understand the explanation, not merely know it,

requires something more from us, cognitively speaking. It requires something like

making connections between components of the situation model that goes further

than sequencing them in a chain.
6

It is not merely a matter of making sense of each

176 M. Newman

D
ow

nl
oa

de
d 

by
 [

R
ho

de
s 

C
ol

le
ge

],
 [

M
ar

k 
N

ew
m

an
] 

at
 0

6:
50

 1
2 

N
ov

em
be

r 
20

13
 



expression in the story—it requires we put them all together in a coherent manner by

connecting each segment in the correct way.

We should therefore like to know what it is to make these connections. What is it to

construct a mental model where we link our explanations together in a way that makes

sense to us—a way which reflects actually understanding the explanation, not just

knowing it? If we look at the example, the difference between knowing the explanation

(in something like a memorization sense) and understanding it lies in the explanatory

connections (italicized above) between its components: it is because molecules generate

an impact when colliding with surface S that they create pressure. It is because this

pressure over the volume is proportional to temperature that we think it explains

the temperature of the gas etc. But what are these explanatory connections?

I think they must be inferential connections because we use them to make inferences

as we go through the explanation. This does not seem controversial. For example, look

at steps 7–8: ‘the rate of change of momentum is Dpx/Dt = 2mvx/2L/vx = mv2
x/L.

From Newton’s second law this is the average force exerted by a molecule on surface

S’. Here it is necessary for us to know what the equation in line 7 means. We must

also know that Newton’s second law says F ¼ ma, and use it to infer that mv2
x/L is

equivalent to ma. This inference provides us with knowledge of the average force of

a molecule on S. A further inference from 8, 9, and 10 to 11 is required before we

can be said to know why the rate of change of momentum for all molecules will get

us to a characterization of pressure for a gas.

So the reasons a gas is generating pressure from its impacts is because it obeys

Newton’s second law. Even assuming we know this, it does not guarantee we will

understand the entire explanation of temperature. We require an important concep-

tual connection between each of the steps in the explanation. We need to make all

the appropriate inferences in order to reach step 25. Importantly, we have to

combine the step 11 inference about pressure with our knowledge of translational

KE (step 20) to get us to step 21. This latter inference helps provide adequate

reasons for the explanation of temperature, and if it is right, we not only know the

explanation, we also understand it. In this case the reasons for concluding temperature

is just average translational molecular motion are causal—the pressure is due to

impact forces. Thus, our understanding of temperature just is a result of knowing

the causal properties of molecules and making inferences based on that knowledge.
7

If this simple inferential account is correct, and I think something like it is, then we

can now glimpse the difference between knowledge and understanding. Understand-

ing this case relies on our inferring that molecules in motion generate temperature

because they generate impact forces. If we merely knew that molecules in motion

are responsible for temperature, and we did not know that this is because they generate

pressure and that this is because of Newton’s second law, then we would not really

understand the explanation. We would not have made adequate conceptual connections

between the properties of molecules, pressure, force, volume, mass, velocity, etc. We

must make these inferences if we are to go beyond merely knowing that kinetic trans-

lational motion of molecules explains the temperature of a gas and achieve under-

standing of why this is so.
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In this case understanding requires we possess the appropriate causal knowledge

that enables us to build a situation model and make the necessary inferences: some

properties of entities, events, etc. (impacts in this case) are such that they lead to or

entail other properties of entities, events, etc. (pressure). So, the idea is that we can

understand something when we make an explanatory connection, and that requires

we know the properties responsible for making that connection the one that it is.

We understand why molecules in motion explain gas temperature because we infer

that it is the mechanical properties of massive objects impacting surfaces that they

confer mechanical forces on objects around them. It is these mechanical ‘bangings’

that are responsible for the force on the surface S, and it is these that are also respon-

sible for the temperature of the gas.

Let me generalize this idea regarding the nature of causal understanding: for an

agent A to causally understand an explanation of some phenomenon P, A must generate

inferential knowledge of the reasons that are causally responsible for the cause C being the

cause of P that it is. The agent therefore has to make inferences to the properties of C that

are responsible for it causing P.

Not all scientific understanding is causal of course, some of it perhaps taking the

form of logical or probabilistic inference. We can therefore make the idea more

general: for an agent A to understand an explanation of some phenomenon P, A must gen-

erate inferential knowledge of the reasons that are causally, logically, or probabilistically

responsible for C being responsible for P.

I would further add that these inferences must be the correct inferences, else A

simply misunderstands P. They must also actually be made by A, or else A acquires

only knowledge not understanding. This whole process is manifested in A constructing

a mental model of the situation P, where there are inferential connections between the

relevant components of the model, rather than inferential gaps, which would reflect

mere knowledge of P. If this idea is along the right lines, it should enable us to

begin delineating knowledge from understanding on any conceptual framework

approach, be it mental models or neural networks.

Before closing this section I would like to address a concern that may arise with the

upcoming transition to section 3. There I will unpack details behind a particular

approach to mental representation, then go on to distinguish understanding from

knowledge using that model.
8

Yet, at this point it might seem I am failing to think

broadly enough about the concept of understanding and its role in relation to knowl-

edge and representation. The idea is that while I am about to dive deep into represen-

tational issues, I have not yet given a convincing picture of what understanding overall

amounts to—that I am losing the forest for the trees. One incarnation of this objection

is to point out I have so far said nothing of the ‘sense’ of understanding and how it

relates to knowledge.

In response, I will make three brief points. First, the above is a highly condensed

summary of the arguments made in Newman (2012), where I think the reader can

find a more complete analysis of the difference between knowledge and understanding,

as well as of their contrast with other relevant issues, such as problem-solving abilities.

Second, I am focused entirely on the issue of scientific understanding, and although
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there is no doubt more to be said about the broader picture even there, we should not

confuse that question with the much larger, and potentially overwhelming problem of

understanding ‘in general’. Third, the ‘sense’ of understanding we might experience,

even within the sciences, is highly suspect as a phenomenal marker or indicator of

genuine understanding. Trout (2002, 2005), de Regt (2004), and Grimm (2009)

have written at length on that issue, and given the amount of controversy surrounding

our feeling of understanding, I cannot see further discussion here serving our purpose

well. We are after all concerned with the separate issue of outlining what might be a

mechanism behind understanding itself.

3. Rule-based Mental Models

What we have so far is the barest sketch of a theory of understanding based on empiri-

cal studies. In this section, I describe the framework of mental models in terms of rule-

based computation. In the next section, I use this framework with our example to

analyse in far greater detail the potential difference between scientific knowledge

and understanding.

On the account I am following,
9

a mental model M is a kind of mental represen-

tation that is used to model the properties, relations, and processes we perceive

around us. We can use rules to show how we build a mental model of a container

of an ideal gas MG. Rules are taken as the basic building blocks of all mental represen-

tations, and when they are activated at different levels of generality or specificity they

form a hierarchy. A mental model is a specific activation of a complex interrelated

hierarchy of condition-action rules M: {C1, C2, . . . Cr}, each rule taking the form of

an ‘if–then’ conditional. The rules can each have multiple conditions C1, C2, . . . Cr

and an action A: C ¼ {C1, C2, . . . Cr/A}. When a model is constructed it is a state

of the hierarchy of rules, which is manifested by our activating a particular sub-

network. The idea behind this approach is that the hierarchy undergoes updating of

rule structure and rule strength with time-step execution cycles, otherwise known as

learning.

The rules comprising the network out of which our models are constructed have

different properties. Some rules are diachronic, while others are synchronic. The syn-

chronic rules are useful for identifying (categorizing) what we are modelling, so they

can be used to atemporally characterize our concept of a gas. For example, ‘if X is com-

posed of perfectly elastic molecules bouncing around without impediment, etc., then

X is an ideal gas’. This rule takes the form as above, C ¼ {C1, C2, . . . Cr/A}.10
Synchro-

nic rules also activate associated rules forming activations of conceptually related rules.

For example, ‘if X is a gas, activate the “molecule” concept’ and ‘if X is a gas, activate

the “air” concept’.

Diachronic rules on the other hand are not concerned with categorization or associ-

ation, but with prediction and action commands. They tell us what to expect in future

states of the model and what to do in response to a stimulus. These temporal rules

therefore tell us predictive things like, ‘if the molecules of a gas lose average transla-

tional velocity, then the gas will decrease in temperature’, and they provide action
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commands such as ‘if you see a drop in temperature, turn up the heat source’. Diachro-

nic rules have the same formal structure as their synchronic counterparts.

A system can fire multiple sets of competing rules at a single time, and thus pos-

sesses considerable parallelism—an advantage the connectionist account had over tra-

ditional linear or serial processing accounts from the modelling paradigm. As a

consequence, learning new rules can be characterized in this framework as the

outcome of multiple competing rules battling it out for dominance, the new rule dom-

inating in this competition and winning the right to represent the environment. For

any single rule, the strength it brings to a competition can vary since rules are strength-

ened or weakened depending on their success at achieving the system’s desired goals,

and the strength of a connection reflects its probability of firing.

For example, take the rule ‘if X has molecules, then X is a gas’. If this wins out in a

situation where one is indeed working with a gas, then it will likely receive reinforce-

ment from the environment. On the other hand if one is instead working with a solid

object, then failed future inductions on the object’s behaviour will cause a weakening

of that rule. This rule is also rather naı̈ve, so the system will cluster it with other rules,

such as ‘if X has point molecules, then X is an ideal gas’ and ‘if X has translational mol-

ecular motion, then X is an ideal gas’ to provide a cluster of rules that together can be

used to identify the object and make associations and prescriptions based on it. In a

basic system the strength of a ‘bid’ to represent the environment made by a rule in

competition with other rules can be determined by the strength it already possesses

combined with the support it gets from other rules in the form of associative acti-

vations. This can be made more precise in the following way. The bid B made by

rule C when its conditions are satisfied can be given by: B(C, t) ¼ aR(C, t) S(C,

t)V(C, t) where a is a constant less than 1, R(C, t) is specificity of C, S(C, t) is the

strength of C, and V(C, t) is the support of C, all taken at a time t. Specificity of a

rule is determined by how many conditions it has that are matched to input data.

The strength of a rule is its probability of firing. Support V for a rule C at some

time t can be represented as V(C, t). This is the sum of all the strengths of the

‘bids’ made by other rules (activations) in the set of all previous active rules {C∗},
and can be represented as follows: V(C, t) ¼

∑
C{C∗} B(C, t 2 1). The strength of a

rule is revised in the following way: a ‘bid’ by a rule to represent the environment

will temporarily weaken that rule’s strength by the amount of the bid B(C, t): S(C, t

+ 1) ¼ S(C, t) 2 B(C, t). If the rule is accepted to represent the environment it is

increased in strength by the size of the bid it makes divided by the number of rules

that supported it.

What I have described is a framework for modelling the mind’s construction of a

mental model. It uses conditional rules as its primitive building blocks. A mental

model is the activation of sets of these rules. There are different ways that rules can

be structured in a mental model, which correspond to two types of rule substructure:

categories and default hierarchies. Categories are just sets of rules that encode our prob-

abilistic assumptions about what properties usually go with what other properties

(gases usually disperse throughout a volume, for example). Categories are therefore

what we otherwise call ‘concepts’. Activation of clusters of these rules can activate
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other concepts as well and gives us an idea of what to expect given the satisfaction of

specific antecedents (if something is a gas, it probably will disperse at some point).

A mental model is the activation of part of a default hierarchy. Default hierarchies

are different from categories in that they are sets of rules organized into hierarchical

structures in virtue of our default expectations for an outcome, given subordinate

and superordinate relations between concepts. For example, we expect that a gas

will disperse throughout its volume and relax to average pressure throughout that

volume. On the other hand, sets of rules can include exception rules, which can

account for cases where the model has components that are not typical. Low tempera-

ture gases make a good example here because they behave in quite peculiar ways, for

example, ideal Bose gases need to be modelled using exceptional partition functions in

statistical mechanics. Default hierarchies are sets of rules that represent these kinds of

different scenarios. In this way they can accommodate variability in the environment.

A mental model, such as that of gas molecules in a container, can therefore be charac-

terized as a set of rules which comprise states of a default hierarchy S which have won

the right to represent the environment based on the strength of their ‘bids’. Models are

therefore the activation of specific rules in a default hierarchy.

There are two important functions comprising such a model, and these are deter-

mined by diachronic and synchronic rules (see Figure 1). The first function describes

how states evolve over time and is given by a transition function, T. This function takes

the initial activated state from S(t) to S(t + 1): T [S(t), S(t + 1)]. It is determined by

activated diachronic rules.

The second function is a mapping function P and is determined by activated syn-

chronic rules. The environment is far too complex to map every element into a

mental model so a mapping function is required that takes elements from the world

and inserts them into the model. In virtue of its selective nature this function is a

partial isomorphism. But P is not a singular mapping; it may map many levels in

the hierarchy generating different levels of specification or generality for a model.

For instance, one mapping P1 may map elements from the environment into just

three in the model (molecules, container, surface), whereas another mapping P2

may be less picky in its selection of categories and select two elements to put into

the model (molecules, container). When a model uses multiple levels of mappings

like this, each will be accompanied by a corresponding transition function Ti, taking

each Pi from its initial state Si into its final state Si′. This transition function therefore

dictates what the model is going to do next. Presumably in the case of an ideal gas in a

container the function will map all current Ti′s from t to (t + 1), which will be for the

component molecules to traverse the volume of the container. The entire collection of

transition functions Ti 2 Ti′ is known as a quasi-homomorphism or q-morphism. In

sum, one can say that a q-morphism is given by the P and T functions, and these

are composed of activated synchronic and diachronic rules.

A final concept in mental models, one that is going to be very important for us, is

that of coupling. Two rules are coupled when one activates the other. For example, R1

has a consequent that is the same as the antecedent of R2. Each time R1 is activated, it

activates R2. In order for a sequence of rules to represent a system as a mental model
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they have to be coupled. Coupling therefore plays an essential role in the construction

and maintenance of a mental model (see Figure 2).

Coupling is generated by two specific inductive mechanisms. I will argue that it is

precisely these mechanisms that are responsible for our coming to understand a

phenomenon rather than merely knowing it. These mechanisms are inductive

Figure 1 A hierarchy of rules as a q-morphism for part of our system. P functions are partial isomorphisms from

the world to the selected mental model (solid lines for default P function, dashed for alternative P functions). T

functions (dotted lines) are time-step transition functions taking members of the model from t to t + 1.

Figure 2 Two rules coupled by the match between action and condition.
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rule generalization and rule specialization (abduction and analogy are special cases of

these).

Rule generalization comes in two varieties, condition-simplifying and instance-

based. Condition-simplifying inductive generalizations are simply the cognitive

system recognizing an unnecessary number of conditions in a rule and modifying

the rule by cutting them. For example, take the rule ‘if X has molecules, these mol-

ecules are perfectly elastic, they have no extension, and they do not collide with one

another, then X is an ideal gas’. It may turn out, given the system’s experience that

this rule is activated just as well without the final condition. If so, then the rule can

be simplified without harm.

Instance-based generalizations are the more familiar cases where a rule is developed

or strengthened on the basis of similar conditions co-varying in the environment with

similar actions. The system frequently sees massive objects, and they are impact-pro-

ducing objects, so it establishes a rule reflecting the co-variation. This is basically a case

of enumerative induction, but is essential for establishing rules that can fire to rep-

resent the environment.

Rule specialization is the second mechanism responsible for generating coupling

between rules. This is a system’s means of modifying a rule that is generally used in

a situation in light of counterexamples. This might, for instance, occur in the situation

mentioned above when we find that not all gases behave according to typical partition

functions. Instead of throwing out the standard rules of applying these functions to

gases, we just modify the relevant conditions to include ‘and the gas is not a Bose

gas’. This mechanism saves the system from discarding useful but overgeneralized

rules.

4. Representation of the Example

Given this excursion into computational representation, we are now in a position to

use this framework to describe a mental model of the explanation of temperature

given by the kinetic theory. This will enable us to clearly distinguish knowledge

from understanding on a mental models account. Since a mental model is supposed

to be a cognitive system’s representation of some part of the environment we start

by giving the P function, which is a partial isomorphism from the environment

into our situation model. We break the explanation into physical components (con-

tainer, molecules) and the properties/relations of those physical components (velocity,

pressure, etc.).

Start with the P function for physical objects. What components are in need of rep-

resentation in the given explanation? The model in our explanation is simple: a con-

tainer and the molecules inside it. The rest is empty space. That gives us only two

categories of objects. The container has various properties, which we add to our rep-

resentation: it is square, with length L and area A. It has surfaces that are perfectly

solid. Molecules also have a number of properties: microscopic, spherical, fast

moving, perfectly elastic, no extension. These two categories of objects comprise the

physical states of our situation model that represent the environment. These categories
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are just sets of synchronic rules for categorization of physical objects. When activated

these rules generate activation of other associated rules. These additional activated cat-

egories will of course be those related to the properties of the entities in the model. For

example, the container description might activate other concepts such as ‘cube’ or

‘box’, and the molecule description might activate rules for ‘ball’, ‘hard’, ‘point’, etc.

So far the activated network of rules forms the P function for the physical object part

of the default hierarchy. There is also a non-object-based set of rules that needs acti-

vating in the model via the P function. There are two kinds of remaining components:

those that are explicitly defined in the explanation, and those that are not. For those

that are explicitly defined, we face the task of making correct categorizations for their

properties, just as was the case for the P function with the container and molecules.

Here are some of the explicitly defined concepts:

(i) Pressure: P ¼ Nmv2/LA

(ii) Total speed squared: v2 = v2
x + v2

y + v2
z

(iii) Length: L

(iv) Area: A

(v) Volume: V ¼ LA

(vi) Total mass of the gas: Nm

(vii) Ideal gas law: PV ¼ NRT

(viii) Translational KE: 1
2mv2

These are the properties and relations of the container and molecules not given by

their object classification but essential to following the explanation (each concept

being activated is again just a complex condition-action rule). There are also non-

explicit properties and relations in the explanation, which if not activated in the cog-

nitive system will undermine its ability to understand. Here are some:

(i) Momentum: p ¼ mv

(ii) Rate of change of momentum: Dp/Dt

(iii) Change in time: Dt ¼ 2L/vx

(iv) Reciprocal: 1/x

(v) Newton’s second law: F ¼ ma

(vi) Density: r ¼ m/V

The P function provides a representation of the explanation’s component parts,

including the physical objects, their properties and relations, and other background-

relevant definitions and principles. The other part of the situation model is given by

the T function, which uses diachronic rules to provide expectations for what the gas

and container are going to do in future time progressions of the model. Presumably

nothing much is going to happen to the container—molecules are supposed to

rebound off its interior surfaces with perfect elasticity. The molecules on the other

hand are changing moment by moment. They are moving very rapidly back and

forth in the x direction with no y or z motion at all, and make no collisions with

one another. They collide only with y–z oriented surfaces of the container, and
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when this happens they bounce back in the opposite x direction with the same speed.

So, in comparison with the very detailed P function, our T function is really very

straightforward: molecules bouncing back and forth like so many ping-pong balls in

a box.

If the mental models approach turns out to be accurate, then what we have built

here is a full representation of the components of the explanation. We do not yet

have a representation of the explanation, merely its parts. Additionally, not all of

those parts will appear to us consciously. Our conscious minds are not going to

have a perfect picture of some particular number of particles going through this

activity, but rather a general, somewhat vague, image of the scene. It is important

to reiterate that if the rule-based approach were close to being correct, this conscious

representation would not reflect the entire model. Much of our representations on this

account may be non-conscious; leaving room for our knowing a great deal that is not

being consciously represented.

In the formal terms introduced above we can say that the model for the gas MG is

composed of a large set of rules CMG: {CMG1, CMG2, . . . , CMGn} some of which are

coupled to others in that either condition or action components match and activate

the condition or action components of another rule in CMG. On the rule-based

account this model is the successful set of rules whose bid for representation was

the strongest of all competing rule sequences, as given by B(C, t) ¼ aR(C, t) S(C, t)

V(C, t). This model is therefore the overall best representation available for the

system on balance of relevance, strength of matching, and support from background

rules. It is also an instance of a q-morphism where the P function is just the set of syn-

chronic rules activated and the T function is the set of diachronic rules. The pro-

gression of the gas molecules through the container can be characterized as the

sequence of time-steps: S(t), S(t + 1), . . . S(t + n): T [S(t), S(t + 1), . . . S(t + n)].

5. Knowledge

In the previous section, I illustrated how a scientific explanation can be represented as

the activation of a complex interrelated hierarchy of condition-action rules. What can

this tell us about the difference between knowledge and understanding?

The nice thing about having our explanation characterized as a set of logically

related rules is that we can see the explanation as a sequence of logically related

sub-sequences of rules. We can view the entire explanation then as a model MG

that is nothing but a complex sequence of rules, each comprising mapping (P) and

transition (T) functions for their respective subset of the sequence. The whole

sequence starts to look like one big complicated argument, each premise of which

has won the right to represent the environment in virtue of winning a bidding war

with other rules. Now if this is a useful way to think of mental representation, then

it can be used productively to shed light on the problem at hand. Let us first consider

what it might mean to know rather than understand an explanation using this model.

One suggestion is that knowledge of the proposed explanation as a model just is the

activation of the appropriate mental model (here that would be rules 1–25). This
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entails that to know an explanation of something like the temperature of a gas merely

requires the activation of an appropriate set of rules. Here the idea is that explanations

are known by an individual if that person can conjure up in their mind explicitly or

implicitly, the model that is given to them by the explanation. On the rule-based

approach this initially seems plausible, since we are assuming mental representations

are just sets of activated rules in a hierarchy, and if these rules accurately reflect the

explanation, then surely the system can be said to ‘know’ that explanation.

Even though I believe this is along the right lines, it is a little too quick. One point to

note is that our traditional notion of knowledge requires something like justified true

belief and so far I have said nothing about these concepts and how they are to be

characterized in the system. The activation of a complex set of rules is not obviously

a satisfactory view of knowledge, even if they do somehow reflect reality.

I cannot hope to do more than scratch the surface here, but will attempt some com-

putation-compatible responses. We can address independently each of the three con-

cepts: justification, truth, and belief. Starting with truth, a naı̈ve correspondence

account is adopted, so all that is required is an accurate representation of the prop-

ositions provided in the explanation. The mental models account does not require

the representations be linguistic in nature, but whether given as propositions or

images, or sounds, or something else entirely, the rules of the model are expected to

correspond to the given input. The explanation addresses what it is for a gas to

have temperature. If the rules activated were instead to represent what it is for a

liquid to have temperature, the knowledge criteria would obviously fail.

Justification is much trickier if for no other reason than epistemologists are still sig-

nificantly divided on what this concept means. I assume here the possibility of implicit

knowledge for our system. Since supporting reasons for a belief are therefore poten-

tially inaccessible I suggest we should adopt an externalist epistemology. I leave entirely

open the details of such an account except to mention it should have the usual defeater

clauses.

Perhaps one will object that the adoption of an externalist epistemology makes life

too easy for my account.
11

The internalist may suggest that to (merely) ‘know that’

something is the case itself requires we be able to make the kinds of conceptual con-

nections that I require of understanding. Therefore, understanding and knowledge are

not so easily divorced as I suppose. My rule-based approach with its sympathy for

implicit connections is easier to accept on externalist grounds, which do not require

transparent access to inferential steps. For internalists then, the kinds of relationships

required for justification are much harder to discriminate, and it is not clear they can

be separated from understanding.

I want to make just a couple of points in response to this challenge. First, it is not

clear to me that the internalist/externalist distinction holds a lot of water anymore.

The leading advocate of externalist epistemology, Goldman (2012), himself acknowl-

edges process reliabilism requires an evidentialist component. This would alleviate the

most pressing problem for externalists—how to accommodate scenarios where sub-

jects have justification without transparent access to evidence for their beliefs. On

the other hand, internalists trying to keep their approach free of implicit processes
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do not fare much better—especially when trying to make sense of a plausible extern-

alist semantics within an internalist account of mental states.
12

I therefore do not

think it terribly helpful to condemn a theory of scientific understanding on a pre-

sumption regarding which final epistemology will prove least subject to devastating

internal tension.

The second point is far less polemical: my account may seem to make life easy for an

externalist, but there is no principled trouble with accommodating all I have said so far

within an internalist epistemology. I suggest Terry Horgan does just this with his

iceberg epistemology.
13

For Horgan, understanding relies heavily on what he calls

‘implicit conscious content’—information implicitly present in our synchronic experi-

ence. He portrays this as possible through a metaphor called the ‘chromatic illumina-

tion of morphological content’. The basic idea is that an internalist can quite happily

appreciate implicit unconscious mental content that may causally contribute to the

fixing of beliefs because there may be justifying experiential content in the evidence

of our senses. This can be achieved through conscious appreciation of our evidence

that is ‘illuminated’ by non-explicitly represented information. A paradigm example

of this is when we ‘get a joke’—a great deal of the inference work done in ‘leaping’

to the conclusion of a joke, given its premises, is of the implicit variety. Still, we do

it, and we do it reliably, because of all the information dormant in those premises.

This information is however not explicit to us. Thus, we can have justification for a

belief even if it is not transparently accessible.

Regardless of how cogent one finds Horgan’s story, my rule-based account should

cohere with it in virtue of the nature of winning rules: all that implicitly inferential

work being done by rules competing to represent. As such, I take it even an internalist

can potentially work within this mental models framework.

Moving back then to the main thread of justification, the concern would seem to be

this: how are we to accept an activated model, or even a single activated rule, as being

justified? In response, this concern can be assuaged I think by recalling the means by

which a rule is activated, and since the entire model MG can be treated as a complex set

of rules, by transitivity this will apply to the entire representation. Recall that a rule

wins the bidding war, and gets activated by the system if it has the highest bid,

where its bid is given by B(C, t) ¼ aR(C, t) S(C, t) V(C, t). This boils down to the

claim that the winning bid has the best overall combination of specificity, strength

and support. These components map quite nicely onto some of epistemology’s

most historically respected virtues for a justified belief. But we are not committed

to the necessity of precisely these three. Whatever one takes to be the desiderata for

belief-selection could similarly be modelled.

That leaves belief. How is a model a belief? This is perhaps the most difficult of the

issues relating mental models to knowledge. As such, I will avoid making any particu-

lar commitments. It is generally accepted in philosophy that a belief is a propositional

attitude and to characterize this notion adequately we require a theory about such atti-

tudes. Representationalists take beliefs to be states of the mind that are representations

with the content of a proposition as their object. Stories as to what this involves

diverge. Dispositionalists care less about the internal structure of the mind per se,

International Studies in the Philosophy of Science 187

D
ow

nl
oa

de
d 

by
 [

R
ho

de
s 

C
ol

le
ge

],
 [

M
ar

k 
N

ew
m

an
] 

at
 0

6:
50

 1
2 

N
ov

em
be

r 
20

13
 



and argue that beliefs are behavioural dispositions with the content of the thing

believed. They also come in many varieties. Then there are interpretationists for

whom beliefs are similarly behaviourally determined, but for whom a stance or

interpretation reveals which individuals do and which do not possess beliefs—

Dennett (1971) is one clear example. Whatever one’s account of beliefs, the approach

to modelling knowledge pursued in this article should be compatible with any natur-

alistically informed theory of mind. It may sound from what has so far been said that

the picture I have of mind is functionalist and hence particularly susceptible to a

causal-dispositional story, but nothing necessitates such a reading. Representational-

ism is compatible with functionalism, and causal accounts can just as well be non-

functionalist. What I have been describing seems to be both representationalist and

causal. In line with my previous suggestion though, what is sketched here should

not constrain us to one particular story of mind (eliminativism versus functionalism,

for example). Similarly, it should not constrain our account of mental content, and in

particular of the propositional attitudes.

6. Understanding

If the above line of reasoning is plausible, then MG can be considered knowledge in

virtue of being a set of beliefs that correspond to reality and are justified. The impor-

tant question now is, How is understanding MG different from knowing MG? I

suggested that the difference lies in the explanatory connections between the com-

ponents of an explanation. For this example these connections are causal. We must

have knowledge of the causal properties for each component that causes it to manifest

the causal behaviour it does in the given explanation: we must know the cause of the

causes.

But that rather general argument can now be made precise in our framework. The

assertion is now capable of being characterized in terms of rule-based mental models.

Rather than merely knowing that rules 1–24 entail rule 25, we are asking what it

means to understand this sequence. We need to know what it is that makes each

cluster of rules trigger the next set, rather than leave these representations as isolated

knowledge units. What we want is an account of how these activated rule clusters

connect to one another to form the sequence given in the explanation. For the situ-

ation model to include the entire explanation the cognitive system has to represent

explicitly the claims made in the explanations 1–25, and also the inferential connec-

tions between these rules. Such inferential connections are revealed by (but may not be

limited to) the italicized inference indicator words in steps 1–25.

Importantly, over and above the explanation, those inferences must be represented

by a cognitive system in order for it to have a complete understanding. All the italicized

statements are inferential in nature, and do the explanatory work in the model. Each

can be represented by the system as a complex condition-action rule that is activated in

the situation model through the P function. They are therefore just more rules, like

those we have already been treating, it is just that they are what I will call ‘inference

rules’ (IRs) as opposed to the ‘ordinary rules’ (ORs) we have so far been addressing.
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They do not tell us what is going to happen in time progressions of the model so they

are not diachronic rules for the model. They represent abstract inferential relations

between parts of the physical system and background theory. We can represent each

of the IRs used in the example as conditional statements where each number refers

to a line from our initial explanation:

(IRi): (1 + 2 + 3) � (4)

(IRii): (4 + 5 + 6) � (7)

(IRiii): (7) � (8)

(IRiv): (8 + 9 + 10) � (11)

(IRv): (12 + 13) � (14)

(IRvi): (11 + 14) � (15)

(IRvii): (15 + 16) � (17)

(IRviii): (17 + 18) � (19)

(IRix): (19 + 20) � (21)

(IRx): (21 + 22) � (23)

(IRxi): (23) � (24)

(IRxii): (24) � (25)

(IRi)–(IRxii) represent the essential inferential steps in the explanation given by kinetic

theory. Without these IRs being fired there is no connection between rules represent-

ing the propositions in the explanation and all that is achieved is knowledge, rather

than understanding.

This can all be explained through the important concept I mentioned earlier, coup-

ling. Recall that two rules are coupled when the firing of one initiates the firing of

another. I have not yet explained what causes one rule to fire another, and we need

to understand this mechanism in order to understand coupling. To do this we need

a means of characterizing our rules in a more precise way. We can start by adopting

a classic approach from classifier systems theory: treat each rule not only as a set of

conditions that entail an action, but treat each condition and action as defined as a

member in a class of ‘messages’. These messages are treated as binary strings of fixed

length, k over an alphabet of three symbols {1, 0, #}. The # can be used as a ‘do not

care’ element to fill the gaps in the k length chain that are not occupied by either 1

or 0. For example, a simple condition/action rule previously schematized as C ¼

{C/A}, where k ¼ 4 might be {11##/0011}. Here the input conditions are four different

values, two of which do not matter. This rule might represent ‘if X has perfectly elastic

molecules, and they have no extension/then X is an ideal gas’. This rule may be trig-

gered by any previously activated rule where the output is {1111}, {1100}, {1110},
or {1101}.

This way of using binary messages to code the condition and action components of

rules allows us to better appreciate how coupling works. The important operating

principle is that of matching. Two rules can be coupled if they have activated messages

that have matching antecedent and consequent. Remember that to get a rule C acti-

vated that rule must win a bidding competition in virtue of having the greatest

value for B, where recall again that B(C, t) ¼ aR(C, t) S(C, t) V(C, t). We have
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already seen that knowledge of an explanation can be represented as a sequence of acti-

vated rules, where the rules that comprise these sequences are activated in virtue of

having won their bidding competitions. They won the right to represent part of the

explanation as a rule. Now we can understand how these ORs can be coupled to

one another: to activate the connection and couple already activated matching ‘ORs’,

which otherwise would just provide knowledge, we require the activation of an ‘IR’ that

connects those rules.

We know that for two ordinary rules (OR1) and (OR2) to be coupled requires that a

match be found between the messages in the action output of the first rule and the

condition part of the second rule. And since our explanations are merely collections

of such rules, the coupling of inferences works in the same way. Two rules are

coupled when their respective rules are similarly ‘matched’ but also activated via a

further ‘coupling’ rule being activated. All it takes to activate this mechanism is for

this IR to win the right to represent connections in our larger model.

Here is another way to think of it. In propositional logic we learn the IR called

hypothetical syllogism (HS), which says, {[(p . q) & (q . r)] . (p . r)}. We can

apply this IR in sub-proofs whenever we come across structurally similar antecedents,

such as [(A. B) & (B . C)]. We can make the inference to (A. C) on the basis of the

IR (HS). Think of each of our inferences in the gas explanation as being like these com-

ponent conditionals, and think of the IR that couples these component rules as being

like our rule (HS). We require the activation of (HS) in order to couple [(A . B) &

(B . C)] to (A . C). Similarly, we require the activation of an IR to couple our acti-

vated gas rules together and provide a coupling between them.

This returns us to the issue of what is required to activate a rule, since to understand

why and when an IR is activated presupposes we understand how an OR is activated

(assuming they operate on the same principles). To see how this works, we need to

recall that each sequence of rules is activated because of its specificity, strength, and

support. So to figure-out why a rule sequence is successful in establishing itself as

representing a situation, and hence generating its connection to the next sequence

of rules, we need to ask where these values R, S, and V come from. How does a rule

get these values? Furthermore, how does a rule originate in the first place? Answering

these two questions will get us to the heart of what constitutes the coupling of rules.

Answering these two questions will therefore get us to the heart of what differentiates

knowledge from understanding on this computational approach.

In the literature these two problems are solved in a myriad of ways, but in general

the issues revolve around what are known as the ‘genetic algorithm’ and the ‘learning

algorithm’. The former accounts for how a rule originates, the latter tells us how it is

revised or removed from the system. If we are to understand understanding we need to

know how these mechanisms generate and update not only our ORs, but also IRs that

connect ORs.

The strengthening of a rule comes from its success in the bidding competition and

feedback from the environment. So long as the rule which is activated does not suffer

negative input in the form of disconfirmation, then it is rewarded as previously men-

tioned in the amount of its bid, shared amongst all its supporting rules. So, if x is the
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number of rules supporting the bid for rule C then the strength of the rule S(C, t) is

updated after time sequence (t + 1) as follows: S(C, t + 1) ¼ S(C, t) + (1/x) B(C, t).

This is just to say that the strength of a rule is updated by the strength of its bid shared

with all other supporting rules for that bid. This accounts for how a rule is strength-

ened over successful bids. For a failed bid, the weakening of the rule is simply the loss

of the bid previously made by the rule: S(C, t + 1) ¼ S(C, t) 2 B(C, t). Further, there

is the possibility that a rule that wins out over all other rule bids is still not strong

enough to be activated. This happens when the activation threshold fails to be met.

An IR will only couple rules if it is activated, so it must overcome this threshold.

This simple set-up explains the necessary components in a successful coupling:

matched rules are coupled by a further IR that operates to activate the coupling

only if that IR reaches activation threshold.

We still need to know where these rules come from, otherwise we have a coupling

mechanism but no origination. This is given by a combination of our previously men-

tioned tendency to make generalizations and the genetic algorithm for the system. The

idea is that we generate associations between examples with common properties and

tend to generalize from those experiences. For instance, we see a series of unsupported

massive objects and they all fall to the ground. We therefore generalize that all unsup-

ported massive objects fall to the ground. Those generalizations, if successful, are

reinforced which gives greater credibility to the condition properties being associated

with the action properties in further rules. That is, the concept of a massive object

gains credibility in the system. A cognitive system then builds on these successful prop-

erties by constructing new rules through using them in further cutting and splicing.

For instance, if the system has repeated exposure to a property like mass and success-

fully associates it with forceful impacts, then the mass category will be reinforced by

confirmed instances. A specific property like this can then be treated as a plausible cat-

egory to the degree that the rules in which it is embedded are successful. That is, the

building blocks for rules in the system are selected based on their success as com-

ponents of rules extracted from experience. For instance, let m represent the property

of mass. The strength of this building block for constructing new rules is given by the

average value v of its success in all the rules using it:

v(m, t) =
∑n

j= 1

S(Cj, t)

n
.

So, if mass has been a successful building block in a lot of rules, then it will be a

good candidate for constructing new rules where it seems appropriate. These rules are

then eligible to enter bidding wars to represent the environment when their com-

ponents are matched to incoming information. If they are successful in both repre-

senting and receiving confirmation from the environment, then these rules are

strengthened by the amount of their bid, as we have already seen. This is how

rules originate.

These ideas can now be used to illustrate our coupling of rules through the acti-

vation of IRs in the following way. Two rules may have matching components, such
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as OR1: {1111/0011} and OR2: {0011/0001}. Let the (0011) segment be our m in this

example. These two rules are eligible for coupling. However they may both be activated

by the system and yet remain uncoupled if there is no further rule which activates OR2

in virtue of its m segment matching the m segment in OR1. This is the situation I have

claimed holds when we merely know rather than understand a set of rules. We require

an activated IR to tell the system that the match is also active. This IR, let us call it IRa,

is just another rule activated by OR1 and OR2 when they fire, so it is activated by associ-

ation. The activation of OR1 and OR2 each activate associated concepts/rules, such as

that of IRa, and will only occur if IRa is beyond activation threshold. That is, they

occur only if IRa is a sufficiently strong rule to represent the relation between OR1

and OR2. The strength of IRa is given by the formula for any rule’s strength, and

will only suffice if it breaches activation threshold. If it does not, then there is no coup-

ling, and all the system achieves is knowledge, not understanding.

So, to be a little more specific, coupling between rules occurs when IRa is activated

where IRa matches components of ORs. The IRa is an association rule between ORs

that have already won the right to represent the model. Just as ‘gas’ activates the associ-

ated concepts ‘molecule’, ‘air’, etc., a coupled set of rules are coupled in virtue of the

activation of synchronic association rules between their matching components. Simi-

larly we can be said to understand rather than merely know why {[(A . B) & (B . C)]

. (A . C)} only if we can match the relevant component parts of the argument to the

rule HS. If the associations fail to fire, the matches remain uncoupled. We fail to

understand.

Here then is a final characterization of the difference between knowledge and under-

standing on the rule-based mental models account being suggested:

(K): Knowledge of an explanation is the activation of ORs in a cognitive hierarchy that

correctly represent the explanation’s propositional content.

(U): Understanding an explanation is achieved when those activated ORs are coupled

by the correct IRs.

So far the picture I have painted provides us with a means for specifying exactly

what it is that differentiates knowledge from understanding. Let us see how this is sup-

posed to work for our kinetic theory example. To do this we merely have to go through

our IRa rules as identified by (IRi)–(IRxii) at the end of section 3. It would be laborious

to cover the entire set, but we can quickly run through a couple.

(IRi) says (1 + 2 + 3) � (4). To make this inference is to couple rules (1)–(3) with

rule (4). To do this we have to match concepts from the antecedents to concepts in the

consequent. In this case the crucial concepts are those of mass, velocity, momentum,

and impact. We are told that this is a system of molecules, which should provide by

mere referential inference the activation in our situation model of the concept

‘mass’. If we did not even know that a molecule has mass, it is unclear if we could

make sense of statement (1) and would likely fail to even know this part of the expla-

nation. We would have a seriously deficient situation model. So, it is a first step merely

to understand the statements. We are told in (3) that each molecule reverses its velocity

in the x direction upon impact with a wall of the container. We have to combine then
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the concepts of mass and velocity to infer that momentum, which again by referential

inference entails the activation of the concept mv, is doubled when a molecule reverses

direction. The molecule loses all its momentum, coming first to a halt upon impact,

and then regains the same amount of velocity in the other x direction. So, the inference

is that the change in momentum is double the initial momentum of each molecule.

This gets built into our situation model but only in virtue of the activation of IRi.

(IRii) says (4 + 5 + 6) � (7). To make this inference merely requires a bit of

algebra, though it is no trivial step in the explanation. We are told in (4) that

change of momentum Dpx ¼ 2mvx. We are also told in (5) that each molecule traverses

the distance from one side of the container and back again in a time Dt ¼ 2L/vx. This is

the time between its collisions on the surface S. (6) tells us that the reciprocal of this is

the number of collisions per second: 1/Dt ¼ vx/2L. We now have the raw material to

perform some conceptual replacements in moving to (7): we multiply Dpx by 1/Dt,

which requires the activation of an IR. This rule is simply of the general form (x mul-

tiplied by 1/y produces x/y). Replacing for our case we get Dpx/Dt. We then have to

infer that since Dpx ¼ 2mvx and 1/Dt ¼ vx/2L that this entails 2mvx/2L/vx. This infer-

ence requires the activation of an IR of the general form (x multiplied by y/z produces

x/z/y). Finally, we have to further infer that 2mvx/2L/vx is equivalent to mv2
x/L. These

separate inferences take some deliberative work, and matching in each case requires

the activation of generalized algebraic rules. Still, assuming there is no principled

reason to think structural matching is problematic, the inferences work in the same

way as cases for concepts that match in a more concrete way, such as we found with

‘mass’.

It is a similar process for each of the remaining terms IRn, where to make the appro-

priate inference necessary to move through the explanation one must activate already

present IRs. Further elaboration would, I think, only belabour the point.

7. Conclusion

The account of understanding as activation of coupled rules via IRs raises a host of

questions. I have space here to address only the most pressing. First, one might

worry that I have said nothing so far about what dictates the activation threshold

for any particular rule, be it an ordinary (diachronic or synchronic) rule, or a coupling

IR. What parameters describe this difference and how are they generated? It is an inter-

esting question but not one a philosopher need feel the burden of answering. This

account is a characterization of what goes on in our minds when working towards a

specific cognitive achievement, not a study of what the relevant empirical values

must be in order to actually do it. Whether the threshold for a rule is set at one

value rather than another is a contextual and empirical question for cognitive

science. This should not be thought a drawback for my account since the task never

was to specify the actual values for particular rules, rather my aim has been to show

that there are different kinds of rules in use when one understands in contrast to

when one merely knows. I have given an objective account of the meaning of that dis-

tinction, not a means for testing for it.
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A second related worry is that in adopting the bidding system for rules I am just

assuming that the correct bid formula must be comprised of the specificity, strength,

and support for that rule. Even if the idea of a bidding competition is empirically vin-

dicated why think these the appropriate parameters? In response I admit that this is

merely one form of modelling which adopts a specific kind of algorithm (known as

the ‘bucket brigade algorithm’ (BBA)). This was the first widely adopted credit assign-

ment scheme in the learning classifier systems community in machine learning, and

although subject to a number of problems it is still considered the benchmark. One

notable alternative scheme is the Q-learning-based systems, which have become the

most popular current implementation. In fact, Q-learning overcame inherent limits

of BBA, but the systems are basically equivalent, now being implemented in a

hybrid—the Q-learning bucket brigade algorithm (QBB). New versions (such as X-

level category system) do not focus on the strength of a rule S(C, t) so much as its accu-

racy. New accuracy-based systems can retain rules that do not accumulate much

reward but are nevertheless still reliable classifiers. Ultimately though, the question

of whether we select strength, support, and specificity as the appropriate parameters

is going to be answered empirically, not a priori. Whether the process by which we

come to represent a situation is given by these specific variables on a rule-based

system is open to empirical challenge. My use of mental models as computational

algorithms in its traditional formulation has been more a matter of expository efficacy

than a claim to empirical veracity. Still, the important thing is that we have a useful

model for how to think about and identify the characteristic relations between knowl-

edge and understanding.

A third concern is that with the introduction of the IR terms, it seems understand-

ing is achievable only by running the risk of an infinite regress of rules. Since IR terms

are required to activate OR terms, what rules are responsible for activating IR terms?

Meta-IR terms? And what further rules will be required to activate those rules, etc.?

This concern is misplaced for I do not claim that one must have a coupling

between an OR and the relevant IR, only that the IR be activated, and this is a

result of it passing threshold and winning the bidding war with other potential IR

terms. Recall that although it is a necessary condition on coupling that there be an acti-

vated IR, this is not the same as the basic algorithm for activation which is given by

B(C, t) ¼ aR(C, t) S(C, t) V(C, t). Coupling was defined as holding between two

rules where the antecedent of one is the consequent of the other. IR terms and OR

terms do not have this relationship.

A fourth worry is that understanding clearly comes in degrees and is therefore a con-

tinuous notion, yet my account commits us to a discrete mechanism whereby rules are

either activated or not. This really is not a problem at all. The objection mistakes

knowledge for understanding. The more IR terms couple OR terms, the more we

understand, but we can of course have incomplete understanding of an explanation

by only activating a fraction of the correct coupling between available OR terms. A

useful analogy here is that of a jigsaw puzzle. If each piece represents a proposition

in some explanation which itself is the complete picture, then mere knowledge of

an explanation with no understanding will be like the unassembled pieces lying in a
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pile. Put some of the pieces together by ‘matching’ parts of the pieces and you begin to

develop understanding of the picture. Put all the pieces together and you have exhaus-

tive understanding of the explanation. In this way we can perfectly well have degrees of

understanding of an explanation by only connecting some of the propositions

inferentially.

A last worry is more interesting, and opens up lines for further investigation. Surely

there are many different ways to understand some phenomenon: causally, intention-

ally, functionally, mechanically, mathematically, etc. This makes it plausible to think

that we ought to avoid a single objective notion of understanding. Yet my account

seems to suggest understanding an explanation itself boils down to just one objective

thing, the activation of IRs to couple ORs. Even if the distinction between these two

sorts of rules can be made coherent there is no means here of differentiating which

form of inference is correct.

This concern opens up an important line of inquiry regarding the relation between

understanding and kinds of explanation. My account is supposed to give an objective

characterization of scientific understanding, so it can accommodate the contextual

nature of explanations by appealing to empirical facts. An agent is correctly under-

standing an explanation if the inferences she makes are of the correct variety—

causal inferences for causal explanations, mathematical inferences for mathematical

explanations, etc. Since the debate over the objective nature of explanation is still

far from settled it would be hubris to suggest understanding must be of only one par-

ticular variety, and my account does not make that claim. For now we can merely say

that these should be correct inferences—ones that correctly match the way an expla-

nation claims the world is. Likewise, a ‘good explanation’ in the objective sense should

be one that is both correct and enables a subject to make the relevant correct inferences

between its component propositions (ORs)—one that enables the subject to under-

stand the explanation. Cushing’s opposition to non-causal explanations can I think

be seen as an expression of frustrations along these lines. Physical explanations are

satisfying when they allow us to make causal inferences, others are less so since they

leave us with the activation of mere mathematical IRs.
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Notes

[1] This law says the orbit of each planet is an ellipse with the sun at one focus.
[2] For a full argument supporting this claim, see Thagard (2012).
[3] For the full argument, see Newman (2012). Nothing in this section depends on any particular

account of how to represent cognition.
[4] This is a little long-winded, I am afraid, but all these steps are necessary for what follows.
[5] See, for example, Way (1991), Otero, Léon, and Graesser (2002), Holyoak and Morrison

(2005), and Tapiero (2007).
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[6] That understanding hangs crucially on making connections is a very common assumption in
the literature, made by among others Zagzebski (2001), Kvanvig (2003), Grimm (2006,
2010), and Elgin (2007).

[7] I am assuming that inferences between mathematical steps in this explanation are still causal
since the mathematics reflects physical properties and relations, rather than abstract objects.

[8] Here I am addressing an issue raised by one reviewer and the editor of this journal. I very
much thank them for pressing me on this point.

[9] See, for instance, Anderson (1983, 1993), Holland et al. (1986), Newell (1990), Thagard and
Litt (2008), and Thagard (2012). The same computational architechture can be found used in
learning classifier systems, a branch of machine learning. For that use, see Wyatt (2002), Bull
and Kovacs (2005), and Urbanowicz and Moore (2009).

[10] Notice however that here the disjunctive antecedent would actually be manifested as a cluster
of rules with identical consequents.

[11] Thanks again to one of my reviewers and to the editor for raising this concern.
[12] This is a sticking point for one of internalism’s most well developed theories, evidentialism.

See especially Connee and Feldman (2012).
[13] Horgan’s views on this issue can be found throughout most of his work on epistemology and

mind over the last couple of decades. A nice place to find them collected is his recent co-
authored book (Henderson and Horgan 2011).
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